Journal of Fluorine Chemistry, 37 (1987) 103-l 12

Received: February 10, 1987; accepted: May 8, 1987

PREDICTION OF THE CRITICAL LOCUS OF BINARY MIXTURES OF FLUOROCOMPOUNDS WITH HYDROCARBONS

T.A. AL-SAHHAF^{*}, A.H.N. MOUSA Chemical Engineering Department P.O.Box 5969, Kuwait University 13060 Safat (Kuwait)

SUMMARY

The critical temperatures and pressures for 14 binary mixtures of fluorocompounds with hydrocarbons were correlated using an iteration procedure based on a cubic equation of state. The predicted values were compared with previously measured values, the agreement being very good.

INTRODUCTION

Since their discovery, fluorine-compounds [1] are finding increasing use in industry. Some studies about vapor-liquid equilibria and critical properties [2,31 for pure fluoro-compounds have been reported. As for binary systems very little work has been done.

Many empirical and semiempirical procedures have been developed for the prediction of critical properties of mixtures. Spencer et al. [4] made an extensive evaluation of available correlations for predicting properties of binary mixture. They recommended Li's method [5] for critical temperature prediction and the method of Kreglewski and Kay [6] 0022-1139/87/\$3.50 **CELSERIER COLL** Exercise Contact Contact Contact Contact Contact Contact Contact Contact Conta for critical pressure measurement. Peng and Robinson [7] proposed the application of an equation of state in conjunction with the rigorous critical criteria in the prediction of critical states for binary and multicomponent mixtures. More recent methods of Heidermann and Khalil [8] and Michelsen and Heidermann [9] which utilize the Gibbs criteria for criticality with a cubic equation of state, have reduced the number of mathematical operations needed. Teja et al. [lo] and Peng [ll] correlated the critical temperatures and critical pressures of binary mixtures by use of a modified two-parameter Wilson equation.

None of these methods was used for fluoro-compounds. Mousa [12] used a method based on the acentric factor and a compensating factor. In this work, the method of Heidermann and Khalil [8] with the Soave-Redlich-Kwong equation of state [13] is used to correlate the binary critical locus for binary systems containing fluoro-compounds.

THEORY

Based on Gibbs criteria for the critical state of a mixture, Heidermann and Khalil [8] derived equations which must be satisfied at the critical point of a mixture of n components:

$$
d^2 A = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\frac{\partial^2 A}{\partial N_i \partial N_j}) \Delta N_i \Delta N_j = 0
$$
 (1)

$$
d^{3} A = \sum_{i} \sum_{j} \left(\frac{\delta^{3} A}{\delta N_{i} \delta N_{j} \delta N_{k}} \right) \Delta N_{i} \Delta N_{j} \Delta N_{k} = 0
$$
 (2)

it can be shown that

$$
\frac{\partial^2 A}{\partial N_i \partial N_j} = RT \left(\frac{\partial \ln f_i}{\partial N_i} \right) T, V \qquad (3)
$$

$$
\frac{\partial^3 A}{\partial N_i \partial N_j \partial N_k} = (\frac{\partial^2 \ln f_i}{\partial N_j \partial N_k})
$$
 (4)

The **fugacity derivatives are evaluated using an equation of state. In this work the Soave-Redlich-Kwong equation (SRK) is implemented. The SRK is given by**

$$
P = \frac{RT}{v - b} \quad - \quad \frac{a}{v(v + b)} \tag{5}
$$

The parameters a and b for the pure components are given by: $a_i = a_{c_i} \quad a_i$ **(6)**

$$
a_{C_1} = 0.42747 R^2 T^2_{ci} / P_{ci}
$$
 (7)

$$
\alpha_i^{\frac{1}{2}} = 1 + K [1 - (T/T_{C_i})^{\frac{1}{2}}]
$$
 (8)

$$
K = 0.48 + 1.574 \omega_{i} - 0.176 \omega_{i}^{2}
$$
 (9)

and
$$
b_i = 0.08646 \text{ R } T_{C_i} / P_{C_i}
$$
 (10)

The following mixing rules are used for mixtures

$$
a = \begin{array}{ccc} n & n \\ \Sigma & \Sigma & x_i \\ i & j \end{array} \qquad (11)
$$

where
$$
a_{ij} = (1 - k_{ij}) a_i^{\frac{1}{2}} a_j^{\frac{1}{2}}
$$
 (12)

and kij is a binary interaction coefficient specific to each binary pair in the mixture.

$$
b = \begin{array}{cc} n \\ \Sigma x_i & b_i \end{array} (15)
$$

The expression for the fugacities of the different components in the mixture is given by Soave. The derivatives of the fugacities with respect to mole numbers were obtained and inserted in the previous equations. The critical temperatures and volumes were calculated using nested iterations of equations [3] and [4] as given by Heidemann and Khalil [8]. Then the critical pressures were calculated from equation (5).

RESULTS AND DISCUSSION

The critical properties for 14 binary systems were calculated and compared with the experimental data of Mousa [12] and [14]. The critical properties for the pure components were taken from [12] and [14], whereas the acentric factors were taken from [6].

For each binary system, the binary interaction coefficient k_{ij}, was adjusted to obtain the best correlation between the experimental and calculated critical pressures and temperatures. The optimum value of $k_{\texttt{i}\texttt{j}}$ was found by minimizing the following objective function (15):

min
$$
\left[\frac{(\text{T}_{\text{cexp}} - \text{T}_{\text{c calc.}})}{\sigma_{\text{T}}^2} + \frac{(\text{P}_{\text{c exp}} - \text{P}_{\text{c calc.}})}{\sigma_{\text{P}}^2} \right]
$$

where $\,$ $_{\text{q}}$ and $\,$ $_{\text{p}}$ are the standard deviation of temperature and pressure in the experimental data. The estimated values of σ_m and σ_p are 0.2 K and 0.034 bars respectively. The critical volumes of the mixture were also calculated, but no comparison was made because no experimental values are available.

A summary of the results for the 14 systems studied are presented in Table 1 which presents the optimum $\texttt{k}_{\texttt{i}\texttt{j}}$ along with the percent average absolute deviations (AAD%) in pressures and temperatures for each system. Comparisons between the experimental and calculated critical temperatures and pressures and the calculated critical volumes are shown in Table 2.

The calculated critical temperatures and pressures agree very well with experimental values. The deviations of the calculated pressures are higher than those of the critical temperatures. The best fit is obtained for the $[C₃H₈ + n-C₆F₁4]$ system. While the systems $[C₃H₈ + n-C₇F₁₆]$ gave the lowest fit. The optimum values for $k_{i,j}$ lies between 0.128 and 0.175 except for the systems $[C₃H₈ + C₆F₆]$ and $[n-C_6H_14 + C_6F_6]$ and $[C_3H_8 + n-C_7F_16]$. For the two systems with $[C_6F_6]$, k_{11} has the lowest values. It is evident that the value of $\texttt{k}_{\texttt{i}\texttt{j}}$ is specific to each hydrocarbor fluorocarbon pair.

The parameters used in the SRK equation of state were developed using mostly data for hydrocarbons. As demonstrated by several authors [7], the prediction of the critical temperature and pressure is generally good, but use of the cubic equation of state to predict critical volumes is expected to cause higher errors. This work

TABLE 1

Binary interaction coefficients and average absolute deviations in T_C and P_C

$$
\text{AAD8 } \Delta T/T = \frac{1}{m} \qquad \sum_{i=1}^{m} \frac{T_{C_{exp}} - T_{C_{calc}}}{T_{C_{exp}}} \quad | \quad (100)
$$
\n
$$
\text{AAD8 } \Delta P/P = \frac{1}{m} \qquad \sum_{i=1}^{m} \frac{P_{C_{exp}} - P_{C_{calc}}}{P_{C_{exp}}} \quad | \quad (100)
$$

where m is the number of experimental points demonstrates the applicability of the SRK equation of state

100

Comparison between experimental and calculated critical properties

(Continued)

110

to thermodynamic calculation for hydrocarbon-flourocarbon systems. The critical loci (T_c and P_c vs x) for the systems studied have simple continuous curves, and no problems were encountered in correlating their behavior using SRK equation of state.

ACKNOWLEDGEMENT

The authors would like to thank Dr. S. Hamam for his assistance and valuable suggestions.

NOMENCLATURE

112

REFERENCES

